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We shall Investigate control systems with Infinite number of degree8 of free- 
dom and one nonlinearity, the latter being an operator of definite class. 
Sufficient conditions of stability of the noncrltlal and critical (one zero 
root) cases are obtained In terms of frequency. 

1. While the problem of absolute stability of nonlinear control systems 
with a finite number of degrees of freedom (systems with concentrated para- 
meters) Is discussed In a number of monographs [l to 33, the analogous prob- 
lem for the systems with finite number of degrees of freedom (systems with 
disturbed parameter ), is the subject of only a few papers [4 to 73. In the 
present work as In B 6 and 73 It Is assumed that the system contains only one 
nonlinearity, and can be fully described by 

t 

Q (t) = f (t) - \ T (t - ~1 ‘I (~1 dt . 
(I.$) 

0 
Here TV Is a strongly continuous hysteresis function C83, I.e. a non- 

linear operator, whose action ensures that a continuous correspondence exists 
between any t > 0 , any function u(7) con- 
tinuous .on.CO, t] and any Initial vglw 

J;l!y__, _, %EE 10 (WI (where SCo(0) 1 1s the set of 
Initial values of the hysteresis function) 
and a function 

continuous in [O, t]. Ordinary, continuous 
single-valued function q(o) Is a particular 
example of such a hystereels function and 
In this case 
function 

E [o(O# --cp kf (‘))I. In fl.1) 
f(t) Is ln ependent of q and 

describes characteristic oaclllat:ons of 
the linear part of the system. 

Laplace transform of the kernel 

T (% 
0 

shall be called a transfer function of the linear part of the system and 
~(tur) will be Its frequency characteristic. 
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In 161, absolute stability of the unique position of equilibrium of the 
system defined by (1.1) was Investigated In Its critical state of one zero 
root (fui~ction x(P) has a pole of first order at zero) and It was assumed 
that cp Is a single-vaiued continuous function of u , satisfying at k= fm, 
the condition 

0 <'I, ,’ : < 1; L + co (1.3) 

In [7] a noncritical case of the same problem Is Investigated under the 
assumption that cp la a strongly continuous hysteresis function, satisfying 
(1.3). 

We ought to mention that bysteresls functions which fall to satisfy (1.3) 
exist, and a syetem exhibit such nonlinearity often possesses a nonunlque 
point of equlllbrlum. A gap [l], p.129) (see Plg.1) Is a typical example 
of such a nonlinearity. It emerges In connection with the 
lity of a set of equilibrium states of a system defined by P 

roblem of stabi- 
1.1) where the 

nonlinearity (1.2) la a member of a class of strongly continuous hysteresis 
functions transforming absolutely continuous function U(T) whose derLvatlve 
o‘(z), EL2 (0, t),. and whose Initial value Is cpo, Into the absolutely contlnu- 
ous function (1.2) with q'ELL [0, /I, and with the condition 

0 *,r '1' / 0' < k < 1- CC (I.iJ 

fulfilled at almost all Instants of time. 

Here ’ denotes differentiation with respect to time, while u !ZI;p (0. 0 
means., that the integral 

/ 

s 
/ a(t)i“c/r 

converges. 0 

Obvious1 
f' 

a gap with Its generator Inclined to the abscissa at the,angle 
of tan-IX see Flg.l), satlafles the condition (1.4) 

Y(t P 
First we shall investigate the noncritical case, when the functions 

'and y(t) In (1.1) tend to zero, as t - + - To determine the possi- 
ble equilibrium states In (l.l), we shall put o(t)'ro,, n -_CCF make the 
substitution - 7 = A , and pass to the limit as t - + - . The above pro- 
cedure gives cu 

5;p + ‘p, c 
r(h) dh = 0 (2.1 I 

d 
which should be satisfied by every equlllbllum state (u,, a) . The actual 
position of equilibrium will be the points of Intersection of the .s;raight 
line (2.1) with the boundary of the hysteresis function (segment on the 
figure). 

Theorem 2.1. Let the following conditions be satisfied: 

1) the Inequality (1.4) Is valid 

2) lim j(t)=O, 
IL~foo 

r(f)ELl[Q, L- -=) 

3) such 6 > 0 exists, that for all real UJ , the particular condi- 
tion 

K-l + Re x (io)) > 6 (2.") 

Is fulfilled. Then 
c ,> 

5 (‘I q(1) \ r(h)dh-+O for t-+ ;cc 

Lemma 2.1. If a(t) and p(t) belong to L,CO, + m), then 

p(t)-+ ~a(L-T)Bir)dl+O for t 4 --;- 00 

0” _ 

Proof of Lemma 2.1. Expressing the Integral as a sum of 



two Integrals with the limits of integration [O, T] and 
Bchwartz inequality, we obtain 

CT, t] and using 

which, after substitution t - r - Ii , becomes 

Keeping P such that the second term is smaller than 0.5~ (E is arbit- 
rary), we can choose such ??,a T , for which the first term Is smaller than 
0.5~ when t > T,- 2' and this proves the Lema. 

Proof of T h e o r e m 
obtain, in accordance with (1.2) 

2.1 . Putting t - ? = A In (1.1) we 

5’ (f) = f (q - \ y (k) q (t - h) dh 
e 

Mfferentlatlon with respect to “t and return to the former variable of 
integration results la 

t 

0’ (t) = Ip (t) - \ y (t - z) q’ (tf ds (9 (I) = f’ (4 - T (4 (PO) (2.3) 

i; 
Let us now introduce the notation 

IL* (t) = 
{ 

1‘ Pf (0 d t d T) 
0 tt<o, t>q 61 (t) = f T v - T) p (t) dr) 

0 
and consider the functional 

r = 

0 

BY (2.3)s 0.1 t - 0, when 0 < t < T . Hence 

r=f&l*dt-f(olp +?)a 

0 0 

(2.4) 

(2.5) 

(2.6) 

The last integral of (2.6) can, by (2.4),Parseval equality and the con- 
traotion theorem C91, be transformed into 

+m 
1 ' 

J=% 
!d Rex(h) +~)I~(io)12dw (2.7) 

where C@) is a Laplace IzadbOOionn of p*(t) . By (2.2) aud Parseval equal- 
ity, we have M 

(1.4) and (2.6) Held the Znequalit; 

rrw uhidh, together with (2.7) snd (2.8) It follows, that when f 2 0 , 
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In the above estimate, constant C Is Independent of ip . Consequently 

9’ EL, [O, + =) 
Returning to (1.1) we obtain, after Integration 

t co 

W=f(f)+& 1 r(Vdh=f(t) 

0 t-r 

00 

--‘1(L)~~~~)dh+Sdrrl’(r) 5 

by parts, 
co 

tvo\ r(h) da. - 
Y 

r (N dh 
0 0 t--T 

In the right-hand side of the above expression, first, second and fourth 
terms tend to zero as t + - by the condition 2 of the Theorem 2.1 and Lem- 
ma 2.1, and this completes the proof. 

We should note, that for systems with a finite number of degrees of free- 
dom, the above Theorem follows from the results obtained In [lo]. 

Now, In order to cbtaln (2.2) In a more general form, let us consider the 
fallowing condltlona. 

M) There exist a constant mv such, that for o(t) belonging to the 
region of definition of the nonlinear operator q(t "r - do, p,,lt and any 
t>o, 

I r) (6 - kc (t) I d mv 

N) If lo*(t)l Is uniformly bounded In t > 0 , then 

Is also uniformly bounded from above In t > 0 . 
L) $f the nonlinear equation under consideration Is 

tution q - ku + v(t) where supIv(t)I < LD for t> 
u(t) of the resulting &ear equation will be'unlformly 

linearized by substl- 
0 then the solution 
boLded for t > 0 . 

Condition (2.11) Is obviously fulfilled for the gap with the generator 
Inclined at the angle of tan-'k . It is easy to show, that for such a gap, 

I 

(2.11) 

the functional 

c 

I q'a"dt < $ 0*2(t) 

0 . 

therefore condition (N) Is also fulfilled. 

(N) 
For the systems with a finite number of degrees of freedom fulfllment of 
follows from (2.2) (and from a more general condition (2.12) given 

below), by the Nyqulst criterion and obvious estimates. 

T h e o r e m 2.2 . We shall assume that: 

1) Conditions (1.4) together with (M), (N) and (L), are fulfilled; 

3) There exist such 8>0 and S>O, that for all real UI the fre- 
quency condition 

1 

is true. 

Then, 

k + Re [(i - io6)x(io)]> 6 (2.12) 
co 
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the functional’ 
Having introduced the functions (2.4), we shall now consider 

- 

r = St o’pL* - q- _ &a$*) & 

0 

Using (l.l), Parseval equality and the conditions (1.4) and (2.12), and 
after some calculations similar to those performed In the proof of Thcorem 
2 .l, we obtain the estimate 

00 T 

\ ($ - S$‘)z dt + e 5 6-9s dt (2.14) 

cl ;, 0 

Substituting TJ 
(L) we conclude that 
uniformly bounded 
Is also uniformly 
second Integral In 
above in T . Consequently q’E_L, [0, + 0~). Remainder of the proof follow6 
that of Theorem 2.1. 

We should note that, if the functions y(t) and v(t) a8 Well all their 
derivatives obtained under the conditions (2) of the Theorems 2.1 @ 2.2 
decay exponentially as t - + - (this occu%ln case of system0 with flnlte 
number of degrees of freedom, whenever the roots of characterlrtlc equation 
lie on the open left-hand side semi-plane), then the condltlona (2) of the 
Theorems 2.1 and 2.2 are obviously fulfilled. 

tioLN 
ow we shall consider the critical case of one zero root. Cur equa- 

t 

GP)=f(t)+x- 5 [r(t--z)+Pl71(dd~ (3.1) 
0 

where n and p are constants, f(t) and y(t) are decaying funotlona and 
n Is a nonlinear operator described at the beglnnlng of this paper. ILvlng 
Introduced the variable t 

E (4 = ; + ( q (4 dt 
0 

we shall write (3.1) as t 

a (t) = f (t) - 1 r (t - 4 rl (t) c-h - PE (0, 4’ = q 
” 

In order to determine the pbaalble oaltlona of equillbr$um of the ayatem 
(3.2) we shall put fz 0, u(t) = u,, q t) =qar P 
second equation of (3.2) we obtain pp 0 , 

and E (t) 5 E,. Ra the 
while the first one yielda the 

equality u,+ PC,- 0 . 

We shall also assume here that two continuous funotions 
together with the number8 

m+u; >“C a(o) 
u’ and u’ exist such, that for al 

(3.3) 

‘p- b (Ql d q (4 dT+ Ia (01, cp_ (U) > 0 for u > a”, ‘p+ (4 < 0 for (T<u’ 

For the gap (see Flg.1) we can obviously a8aunuz, that 

‘p+ (a) = k (a + A), a cp._ (0) = k (0 - A) 

T h e o r e m 3.1 . We ahall assume that 

1) conditions (1.4) and (3.3) hold; 

2)‘lim f= lim f’= lim r=O, 
tct-oo t++m t-F+a, 

f’, r E Lz 10, + m), IE 4n +m); 



940 4.P. aDu# 

holi;e v&i d such b > 0 exists, that for all real u) condition (2.2) 

lim q = lim (a + f3.g) = 0 for t + 00 

in 
L e m m a 3.1.. If a MEG IO, + 4, while e(t) Is uniformly bounded 
t > 0 and tend6 to zero a8 t - - , then 

p(t)= (a(t - z) p (t) dz + 0 t-*$-CO. 

0 

Proof of this Lem followe closely that of of the previous Lenma. 

Proof or Theorem 3.1. Uelng the function6 (2.4) and the 
?unotlonaI (2.5), we ahall trannform the latter, utilizing the equality 
d- * -01- ~5' valid for 0 < t < T (see the proof of Theorem 2.1) 

For the fir& IntegraI of the right-hand aide of (3.4) estimate (2.9) 
hy virtue of the seoond equation of 13.21, Is equal to 
La& term, by ParsevaI equality and comdltlon (2.2), haa 

- 6 q’adt 
s 

0 

w the above results and ualng (3.4) with (1.4), we obtain 

from whlah It ?olloWS that Iv(t)! Is uniformly bounded ln t > 0 , and 
q-EL, IO, + -1. 

Mfferentlatiag the rlret equation of (3.2) and utlllzlng Its second 
equation, condition (2) of Theorem 3.1 and Lenavl 2.1, we obtain 

lim (a’ -+ pq) = 0 (3.5) 
t-+-w 

Nextwe rhaIlshouthat llmn =0 a8 t - +m . 
6>0 weoanflndsuoh P>O 
is true for the iMotion a(C) 
argumnt Is anaIogo\u, for the 
for t>T aslonuaa on>b. 
tlm t,> T , that-when ’ i - t1 

--s<Prl(t)<6 
Itrerlnato ohouthat If the estimate (3.6) Is 

than It will hold for all t * t, . Let UE aaaume 
an InEtant or t toe (tl, td, can be 
, aad at whiah the derivatives o* 

oontradlotrthe ahoiae of P. Hence, 
@(to) > 0 andt $21 > 6 which 
llmn-0 a8 

Purlngtothe liDIt t - +- In the first equation of (3.2) and using 
Le- 3.1, oomoltios the proof of Theorem 3.1. 

A romult n&l- the above theorem was obtained ln [ll to 133 for SYS- 
teu with flalto nukr of degrees of freedom. 

OaWltloa (2.2) oan be extended to the critical case, namely the folIowIng 
theoro8letrue. 

Theorem 3.2. bt ua aesume that for the equation under conslder- 
ation 

1) oondltlons (1.4),(3.3),(M),(N) and (L) are satlofled. 
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3) p > 0 and such 6 > 0 and @>O, exist, that for all real lu 

1/K--6p+Re1(1-_io6)11(io)l>S (3.7) 
Then 

limq = lim (0 +pE) = 0 for t-e $ 00 

Proof 
(2.13). 

Using (2.4) and (3.2) we shall transform the functional 
Steps'slmllar to those employed in the proof of Theorem 3.1, lead 

to the estimate T m T ._ 

+(T) +$ s tj’dt+(po2+ 3 (9 - 0$‘)2 dt + 6 1 q- at (3.8) 

0 0 0 

Putting in 3.1 n = 
f 1 

ks + v we find that, by (M) and (L) 
consequently q(t 1 are uniformly bounded when t>o. *,;fel:ZtlZ"of 
the first equation of (3.2) shows that Iu‘(t)f is also uniformly bounded. 
Hence, from (3.8), by virtue of (L) it follows that q’ELt[O,+oo). Rest of 
the proof Is Identical to that of Theorem 3.1 and this completes the Proof 
of Theorem 3.2. 

We should note that in case of systems with finite number of degrees of 
freedom, frequency conditions quoted in Theorems 2.1, 2.2, 3.1 and 3.2 can 
[3] be expressed In terms of Lur'e's resolvents. These frequency conditions 
possess a simple geometrical meaning: modified phase-amplitude frequency 
characteristic of the linear part of the system should be contained In some 
semi-plane. 

Examlnatlon of the validity of conditions (2.2),(2.12) and (3.7) by analy- 
tical methods is, as a rule, very difficult, and can be performed.only for 
relatively simple cases. Otherwise, numerical methods must be used. 

All the above results can be extended to systems with more than one non- 
linearity but corresponding frequency conditions become difficult to verify. 
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In the course of Investigation of motion of a material medium, use is often 
made of curvilinear coordinates. In such a case, the metric of curved space 
Is given by the Interval 

- ds2 = gi, da? dz” 

where Q,* are the components of the metric tensor. 

In the case of motions possessing central symmetry (after some coordinate 
transformation, should It be necessary), the usual Interval Is given In the 
form 111 of a Schwarzschlld metric 

- ds2 = - e”c”dt2 + e’ dra + r2 (de2 + sin% Odqz (Y = Y (4 r), h = I(4 r)) 

However, In a number of gas-dynamics problems, a different metric is 
found to be of use, In which the spatial part of the Interval is Euclidean 

- &2., -c",.+&a + &'/*P cdtdr + dra + r2 (dW + sin* 6dqz) (P = P (t* r)) 

With this condltlon adopted, the investigation of the motion of gas in 
the gravity field becomes considerably slmpllfled. Purely spatial metric 
will still be a'curve 

@=(i + el+-") dr2 + G(dO* + sinaOdqa) 

and so will geodesic trajectories. 

The above metric can be obtained directly from the Schwarzschlld's metric 
by putting eV=~_rr,/r,h=--Y, and using the transformation 


