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We shall investigate control systems with infinite number of degrees of free-
dom and one nonlinearity, the latter being an operator of definite class.
Sufficient conditions of stability of the noneritial and critical (one zero
root) cases are obtained in terms of frequency.

1. While the problem of absolute stability of nonlinear control systems
with a finite number of degrees of freedom (systems with concentrated para-
meters) 1is discussed in a number of monographs [1 to 3], the analogous prob-
lem for the systems with finite number of degrees of freedom (systems with
disturbed parameters), is the subject of only a few papers [4 to 7). In the
present work as in L6 and 7] it is assumed that the system contains only one
nonlinearity, and can be fully described by

t

siy=11—{re—nnad .9y
0

Here n(T) is a strongly continuous hysteresis function (8], i.e. a non-
linear operator, whose action ensures that a continuous correspondence exists
between any t > O , any function ¢(T) con-
tinuous on [0, t] and any initial value
Qo EE [0 (0)] (where Z£[0(0)] 18 the set of
initial values of the hysteresis function),
and a function

n (1) = ¢ [0, Yol n0) =9, (1.2)
continuous in [0, ¢]. Ordinary, continuous
single-valued function ¢{(co) 1s a particular
example of such a hysteresis function, and
in this case E |[o (0&] =¢ [0(0)]. In (1.1)
function Jf(t) 1s independent of n and
descrlibes characteristic oscillations of
the linear part of the system.

Laplace transform of the kernel
Fig. 1 X .
v, =Py
0

shall be called a transfer function of the linear part of the system and
x(tw) will be its frequency characteristic.
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In [6], absolute stabllity of the unique position of equilibrium of the
system defined by (1.1) was investigated in its critical state of one zero
root (function x{(P) has a pole of first order at zero) and it was assumed
that ¢ 18 a single-vaiued contlnuous function of o , satisfylng at k= +o,

the condition
V< is< k< 4+ oo (1.3)

In [7] a noncritical case of the same problem is investigated under the

?ssqution that ¢ 1s a strongly continuous hysteresis function, satisfying
1.3).

We ought to mention that hysteresis functlons which fail to satisfy (1.3)
exist, and a system exhibit such nonlinearity often possesses a nonunique
point of equilibrium. A gap ([1], p.129) (see Pig.l) 18 a typlcal example
of such a nonlinearity. It emerges in connection with the problem of stabi-
11ty of a set of equilibrium states of a system defined by (1.1} where the
nonlinearity (1.2) 1s a member of a class of strongly continuous hysteresis
functions transforming absolutely continuous function o(T) whose derivative
o (1), €L, (0, t), and whose initial value is @o, into the absolutely continu-
ous function (1.2) with n &L, [0, /], and with the condition

0<{ /0 <h< oo (L4)
fulfilled at almost all instants of time.

Here °* denotes differentiation with respect to time, while ¢ & /7r (0, ()

means, that the integral .

converges. o

Obviously, a gap with its generator inclined to the abscissa at the-angle
of tan 'y ¥see Pig.1), satisfies the condition (1.4%)

?. First we shall investigate the noncritical case, when the functions
7{t) and y(¢) 1n (1.1) tend to zero, as ¢t - + » . To determine the possi-
ble equilibrium states in (1.1), we shall put O (f) =0,, N =Py make the

substitution — 7T = A , and pass to the limit as ¢t - + =« . The above pro-
cedure gives 0
5CO+(POO§T(A')(1}“:0 (2‘“

0

which should be satisfled by every equilibliium state (0ns 9o) . The actual
position of equilibrium will be the points of intersection of the straight
1ine {2.1) with the boundary of the hysteresis function (segment ab on the
figure).

Theorem 2.1 . Let the following conditions be satisfled:

1) the inequality (1.%) 1is valid

2) i f () =0, FOrm, \roydhe Ly, =) 1(OELI0, + o)
t

3) such & > O exists, that for all real w , the particular condi-

tion Py
K14 Rey(io)>38 (2.2

is fulfilled. Then

o

s() )\ 1WA >0  gor t— ko
(1]

Lemma 2.1 . If oft) and pg(t) belong to L [0, + =), then
t
HU%%QaO—ﬂBﬂMraO for t — -1 o0
0

Proof of Lemma 2.1 . Expressing the integral as a sum of
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two integrals with the limits of integration [0, T] and [T, ¢] and using
Bchwartz inequality, we obtain

¢

u(z)x<[§a2(t—r)d-c §5‘-‘(~:}dr]""+{<a <zmr>dr§;sz<f>urJ "
0 0 T

which, after substitution ¢ — 7 = 1 , becomes

r@l< [ OSO a2 (A) ‘dxogo B2 (1) dr]l/’ + {OSO a2 (A) d).o§ B2 (1) dr}%
T ') i) T

Keeping T such that the second term is smaller than 0.5¢ (e is arbit-
rary), we can choose such 73> T, for which the first term 1s smaller than
0.5¢ when ¢t > I'— T and this proves the Lemma.

Proof of Theorem 2.1 . Putting ¢ — 7 =X 1n (1.1) we
obtain, in accordance with (1.2}

t
s =10—{rmnu—na
]

Differentiation with respect to ¢ and return to the former variable of
integration results in

t
o (8) =P {t) — i YE—7)n {v)dv @@= —1{) o) 2.3
9
Let us now introduce the notation
N O<I<T) !
wo={"" Coisn @ O={re—ow@em  eo
and consider the functional oo
) s
r:S (Gl.l,*-—--—k—‘)d! (2.5)
]
By (2.3), 0*= ¢y — 0, when O < t < 7 , Hence
T oo
76 ‘2
r :5 Pur dt—S (oxpﬂ‘ + ) (2.6)
H o

The last integral of (2.6) can, by (2 4), Parseval equality and the con-
traction theorem [9], be transformed in

+C0

1 r 1
J:"‘ES (Re x(im)+T);g(im) £ do 2.7

where ((P) 1s a Laplace transform of u*(¢) . By {2.2) and Parseval equal-
ity, we have

[oe]
S u*t dt 2.8)
[1]

{1.%) and (2.6) yield the inequality

T oo T
IS Yu* dt 1>3dt +5 5 S 1 2de 2.9)
¢ 0

from which, together with (2.7) and (2.8) it follows, that when r = O ,
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T o}
S InPde<e (Cz—;z—Sipzdt) (2.10)

0 0
In the above estimate, constant (¢ 1s independent of I . Consequently

N &L, [0, + 00)
Returning to (1.1) we obtain, after integration by parts,
t d o‘o oo
c=10-\nm5 § rma=r0rel rma—
0 t—t ¥
o z 5
—noyrmatlono | rma
0 0 t—-t
In the right-hand side of the above expression, first, second and fourth

terms tend to zero as ¢ - =« by the condition 2 of the Theorem 2.1 and Lem-
ma 2.1, and this completes the proof.

We should note, that for systems with a finite number of degrees of free-
dom, the above Theorem follows from the results obtained in [10].

Now, in order to cbtain (2.2) in a more general form, let us consider the
following conditions.

M) There exist a constant ™, such, that for o(t) bvelonging to the
region of definition of the nonlinear operator 'ﬂm = ol0, ). and any
t>0

’ M) — ko ()| < my, (2.11)

N) If |Jo*(¢t)| is uniformly bounded in ¢ > O , then the functional
t
S ST ()0 (1) dv
0
1s also uniformly bounded from above in ¢ > O .
L) If the nonlinear equation under consideration is linearized by substi-

tution n = ko + v(¢) , where sup|vw(t)|] <= , for ¢ > O, then the solution
o(t) of the resulting linear equation will be uniformly bounded for ¢ > O .,

Condition (2.11) 1s obviously fulfilled for the gap with the generator
inclined at the angle of tan"'x . It 1is easy to show, that for such a gap,

¢
Id

k
5 Qs dr 5 §'2(t)
0 +
therefore condition (N) is also fulfilled.

For the systems with a finite number of degrees of freedom fulfilment of
(N) follows from (2.2) (and from a more general condition (2.12) given
below), by the Nyquist criterion and obvious estimates.

Theorem 2.2 . We shall assume that:
1) Conditions (1.4) together with (M), (N) and (L), are fulfilled;
]

(e ¢)
2) lim f@®=0,7.1 11, S YdAE L [0, + o0), 7 & Ly [0, 00), sup |f'|<+ oo
t—>—4-00 ; t>0

3) There exist such §8>0 and ¢ > 0, that for all real w the fre-

quency condition 1
% + Re [(1 —iod) X (iw)] > 6 (2.12)
is true. @
Then,
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o

c(t)—{—n(t)Sy(k)dl—»O for -+ o0
0

P roof . Having introduced the functions (2.4), we shall now consider

the functional o

*2
r= S (c’ u* — p.T_ - \‘}c"p,*) dt (2.13)
0

Using (1.1), Parseval equality and the conditions (1.4) and (2.12), and
after some calculations similar to those performed in the proof of Theorem
2.1, we obtain the estimate

00 T
2

—.3—5 ' dt<—8~§ (P — )2 dt + f}S o dt (2.14)
L] (1] ]

Substituting n = %0 + in (1.1) and utilizing the conditions (M) and
(L) we conclude that |o(z)| and consequently by (2.11) also |n{t)| , are
uniformly bounded for t¢t.> O . Differentiating (1.l) we f£ind, that |e°*(t) |
is also uniformly bounded for ¢ > O . Hence, 1t follows from (N), that the
second integral in the right-hand side of (2.14) is uniformly bounded from
above in 7 . Consequently n'&L,[0, 4-oc)- Remainder of the proof follows
that of Theorem 2.1.

We should note that, if the functions J(t) and y(z) as well as their
derivatives obtained under the conditions (2) of the Theorems 2.1 and 2.2
decay exponentially as ¢ ~ + = {(this occurs in case of systems with finite
number of degrees of freedom, whenever the roots of characteristic equation
lie on the open left~hand side semi-plane), then the conditions (2) of the
Theorems 2.1 and 2.2 are obviously fulfilled.

3, Now we shall consider the critical case of one zero root. Our equa-
tion 1is ¢

st =1@+x—{Ire—n+eInmd (3.9)
0

where % and p are constants, f(¢) and y(t) are decaying functions and
n 1is a nonlinear operator described at the beginning of this paper. Having
introduced the variable

t
E(t)=3+Sn(f)dr
P
we shall write (3.1) as :
sty=fO—{rt—Dn@dr—pr(), &=n (3.2)
0
In order to determine the possible ?ositions of equilibrium of the system
(3.2) we shall put /=0, 6(t) =0, N(t) =0, and E(t) =E, From the
second equation of (3.2) we obtaln gqu= O , while the first one yields the
equality O,+ pfe= O .
We shall also assume here that two continuous functions (o) and o_(0)
together with the numbers ¢’ and o exist such, that for all ¢ > O (3.3)
e-loMI<M@ <o, lo@®], 9.0 >0 for >0, ¢,0)<0 gor 00
For the gap (see Fig.l) we can obviously assume, that
9. 0)=k(c+A), a Q_(5)=k(s—A)
Theorem 3.1 . We shall assume that
1) conditions (1.4) and (3.3) hold;

2) 1 = li P =0, ’, L ;
tlmf t_,lﬁof lemT 1€ L0, +), r&Li[0, + oo);
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3) p> Oand such & > O exists, that for all real w condition (2.2)
holds. Then .
limn = lim (0 + p§) = 0 for { — oo
Lemma 3.1.. If « ()L, [0, + oo), while g(t) is uniformly bounded
in ¢ > 0 and tends to zero as t - = , then
t

B(1) = Sa(t—-t)B(r)dr-»O t = 4 oo,
9
Proof of this Lemma follows closely that of of the previous Lemma.

Proof of Theorem 3.1 . Using the functions (2.4) and the
functional (2.5), we shall transform the latter, utilizing the equality
= § —0,— pf* valid for O < ¢t < T (see the proof of Theorem 2.1)

T T 00
A . : us
r=S wp‘dt—psgn dt-——S(clp‘—|~T)dt (3.4)
0 0 (4
Por the first integral of the right-hand side of (3.4)l estimate (2.9)
3

holds. Se ™, by virtue of the second equation of {3.2), is equal to
0.59!%'— m)r ‘Last term, by Parseval equality and condition (2.2), has
an upper bound T
Y g
0
Summing the above results and using (3.4) with (1.4), we obtain
o0
_g_ 2 6 y 2 p 9 2
MM+ 5\ PS50 + 5| vRde
0 0

from which 1t follows that |n(¢)| 1s uniformly bounded in ¢ > O , and
7] EL! [01 + °°)0

Differentiating the first equation of (3.2) and utilizing its second
equation, condition (2) of Theorem 3.1 and Lemma 2.1, we obtain

lim (¢4 pm) =0 (3.5)
t->+oo

Next we shall show that 1limn =0 as ¢t - +« ., By (3.5), for any
8> 0 we can find such T > O , that for all ¢t > T, the estimte |c|(¢)]<0.58
is true for the function ¢(t) = ¢+ pn . Let on(7) > & (trend of the
argument is analogous for the case pn{7) < — & ) . Then 0°= ¢ — pn<—0.55
for t> T as long a8 opon> &6 . By ?3.3) we can find such an instant of
time ¢,> 7 , that when ¢ = ¢,

=8 pn (<6 (3.6)

It remains to show that if the estimate (3.6) 1s true for ¢ = t,> T,
then 1t will hold for all ¢ > ¢, . Let us assume that|pn(t,)| > & at
te> t,, e.8. pn(ts) > 8 . Hence, such an instant of t L (f1, 12), can be
found for which pn(t) > ¢ when ¢t = ¢, , and at which the derivatives o¢°
and n-z:» 0) exist. Then, by (1.%), ¢°(to) > 0 and e(Z,) > 6 which
contradiots the choice of 7 . Hence, 1limn =0 as ¢t~ + o .

Passing to the 1imit as ¢ — + = 1n the first equation of (3.2) and using
Lemma 3.1, conocludes the proof of Theorem 3.1.

A result resembling the above theorem was obtained in [11 to 13] for sys-
tems with finite number of degrees of freedom.

Condition (2.2) can be extended to the critical case, namely the following
theorem is true.

Theorenmn 3.2 . Let us assume that for the equation under consider-
ation

1) conditions (1.%),(3.3),(M),(N) and (L) are satisfied.
2) lim f= lim =0, {,{,7,7E€LI0,+w®), t1E€LI0,+ )
t-to0 t-»-}-co
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3) p>0 and such 6> O and ¢ >0, exist, that for all real w

1/K —8p + Re [(1 — i) x (iw)] > 6 3.7

Then
limn=lim@@-+pEi=0 for t— 4 oo

Proof . Using (2.4%) and (3.2) we shall transform the functional
(2.13). Steps similar to those employed in the proof of Thecrem 3.1, lead
to the estimate T o T

) 2 ¢
—Z- 7 (T) +TS N2 —92"%2 + TS (W — Ov)2de + 08 sy dt (3.8)
1] L] 0

Putting in 3.13 n = %6 + v we find that, by (M) and (L}, lo(¢)}| and
consequently {n(t}| are uniformly bounded when ¢t > O . Differentiation of
the first equation of {3.2) shows that |o (£}] is also uniformly bounded.
Hence, from {3.8), by virtue of (L) it foliows that m'e= Lsl0, - o0). Rest of
the proof is identical to that of Theorem 3.1 and this completes the proof
of Theorem 3.2.

We should note that in case of systems with finife number of degrees of
freedom, frequency conditlions quoted in Theorems 2.1, 2.2, 3.1 and 3.2 can
[3] be expressed in terms of Lur'e's resolvents. These frequency conditions
possess a simple geometrical meaning: modified phase~amplitude frequency
characteristic of the linear part of the system should be contalned in some
seml~plane.

Examination of the validity of conditions {2.2),(2.12} and (3.7) by analy-
tical methods is, as a rule, very difficult, and can be performed, only for
relatively simple cases. Otherwise, numerical methods must be used.

All the above results can be extended to systems with more than one non-
linearity but corresponding frequency conditions become difficult to verify.
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SCHWARZSCHILD PROBLEM FOR A METRIC WHOSE
SPATIAL PART IS PURELY EUCLIDEAN

(ZADACHA SHVARTSSHIL'DA DLIA METRIKI 8 CHISTO
EVKLIDOVOI PROSTRANSTVENNOI CHAST'IU)
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In the course of investigation of motion of a material medium, use is often
made of curvilinear coordinates. In such a case, the metric of curved space
is given by the interval

—dst =gy, da* dz®
where ¢,, are the components of the metric tensor.

In the case of motions possessing central symmetry (after some coordinate
transformation, should it be necessary), the usual interval is given in the
form [1] of a Schwarzschild metric

—ds? = — e’c?dt? + ¢ dr? - r2 (0% 4-sin2Bdg?  (v=v (i, r), A=A(t, T))

However, in-a number of gas-dynamics problems, a different metric is
found to be of use, in which the spatial part of the interval is Euclidean

— dst=s — e di? + 2¢'t¥ cdtdr - dr? 4 r?(d02 4+ sin?0do?)  (w=p(t, r))

With thils condltion adopted, the investigation of the motion of gas in
the gravity field becomes considerably simplified. Purely spatial metric
willl still be a‘curve

dit =1 4 e*) dr? + r2? (d0? + sin? 0dg?)
and so will geodeslc trajectories.

The above metrigc can be obtained directly from the Schwarzschild's metric
by putting e“::i——rojr,x==——v, and using the transformation



